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Abstract: Brayton cycles are open gas turbine cycles extensively 

used in civil aviation and the petrochemical industry because of 

their advantageous volume and weight characteristics. With the 

bulk of engine emissions associated, it is necessary to promote 

their environmentally-friendliness, including sound technical 

performance regularly. This research considers high bypass-low 

specific power plants in aviation and aero-derivative gas turbines 

combined-heat-and-power generation in the petrochemical 

industry. The investigation encompasses the comparative 

assessment of simple and advanced gas turbine cycle options 

including the component behaviour of the systems. This comprises 

the performance module. The research has contributed to 

understanding the technical performances of simple and advanced 

cycle helicopter engines, and aero-derivative industrial gas turbine 

cycles at design and off-design conditions. The simple cycles were 

modified for better fuel burn and thermal efficiency by using some 

additional components to form the advanced cycles. The helicopter 

engine investigated was converted to a small-scale aero-derivative 

industrial engine. Modeling the combined-heat-and-power 

performance of the small, medium, and large-scale aero-derivative 

industrial gas turbines was also implemented. The contribution 

also includes understanding the technical performances of both 

simple and advanced aero-derivative gas turbines combined heat-

and-power at design and off-design A case study underlies the 

development and deployment of this model. The novelty is the 

conception of a tool for predicting the most preferred simple and 

advanced cycle aero-derivative engines combined heat-and-power 

generation in the petrochemical industry and the derivation of 

simple and advanced cycle small-scale aero-derivative industrial 

gas turbines from helicopter engines. 
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I. INTRODUCTION

This research considers high bypass-low specific power

plants in civil aviation and aero-derivative gas turbines 

combined heat-and-power generation in the petrochemical 

industry. The investigation encompasses a comparative 

assessment of simple and advanced gas turbine cycle options 

including the component behaviours and the environmental 

and economic analysis of the systems. Fundamentally, the 

Brayton cycle is the thermodynamic cycle based on which 

principles gas turbine power plants operate. It is commonly 

referred to as the standard open gas turbine cycle [1][33][34]. 

Brayton cycles are extensively used in the civil aviation and 

petrochemical industry because of their advantageous volume 

and weight characteristics. These cycles are used as prime 

movers in the mechanical drive of rotating equipment, 

pumping of fluids, electric power generation, and industrial 

process heat generation in combined-heat-and-power 

concepts Gas turbine is a unique heat engine (also a fluid 

machine) that has over the years brought thrust and power 

generation to fore, and unarguably one of the most important 

developments of the 20th century that has changed human 

lives in many ways [2]. Inevitably, emissions from gas 

turbine engines in both aviation and industrial applications 

have contributed immensely to the degradation of local air 

quality, and to the greenhouse effect and global warming 

worldwide. It is, therefore, needful to regularly promote 

environmentally friendly operation of the cycle engines. 

Based on this fact, for instance, the Advisory Council for 

Aeronautics Research in Europe (ACARE) has defined some 

targets for 2020 and 2050 among which is reducing CO₂, 

emissions by 50% [3]. Also, the Clean Sky Joint Technology 

Initiative (JTI) European Union collaboration, has set goals 

aiming at reducing fuel consumption and CO2 emission by 

50%, NOx by 80%, and sensed external noise by 50% [4]. 

Besides, gas turbine user requirements have, over the years, 

necessitated technological advancement in engine 

performance, and comprehensive research is being conducted 

to achieve this [5]. Technically, the improvement of thermal 

efficiency for industrial and aero gas turbines is of paramount 

importance to the overall performance of the engines. An 

increase in thermal efficiency depends on certain factors 

including changes in some engine cycle parameters, cutting-

edge technology of engine components, and, the introduction 

of different overall thermodynamic cycles [6] [7].  
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More so, the performance and economic viability of gas 

turbines are inseparable. This is because performance is made 

up of shaft power or thrust sold by a gas turbine manufacturer 

and bought by a user. If an engine with bad performance is 

designed, the sellers will struggle hard to sell and most likely 

make losses. Likewise, a user who buys a poorly designed 

engine will lose income [8]. This research aims to adapt the 

most preferred for aero-derivative gas turbines combined 

heat- and power generation in the petrochemical industry.  

II. LITERATURE REVIEW 

The concept of the Brayton cycle was highlighted [9], 

[10][30][31]. The emergence and application of the TERA-

techno-economic and environmental risk analysis framework 

in areas of multi-disciplinary optimization and management 

of power plants was explained [11]. Furthermore, research 

was carried out on technical risk analysis of gas turbines for 

natural gas liquefaction [12]. On helicopter engine 

performance, improvements predictions were made in 1968 

and 1971 that by the year 1980, there would be increases of 

about 17% in OPR, 7% in TET, and a decrease of about 17% 

in SFC [13]. Also, the potential of the growth of the 

turboshaft engine of a helicopter with time, customer taste, 

and technological advancement, and improving the 

preliminary design of the Rolls-Royce/Turbomeca RTM 322 

engine model through increasing the TET; flaring the LP 

compressor, and, zero staging the LP compressor, were 

reported [14]. About aero-derivative industrial gas turbines, 

it was reported that a performance platform was developed 

for Manx Electricity Authority (MEA) for their two existing 

GE LM2500+ aero-derivative gas turbine engines providing 

a graphical user interface, which is flexible enough to 

implement varying operating conditions in performance and 

diagnostics analysis. More so, a new version of PYTHIA 

software and an off-design adaptation method were 

developed that will enable the engine model to match the 

MEA's service engine performance at part load conditions [15] 

[16]. Aero-derivative gas turbines give various advantages 

over their industrial design counterparts, in technology, 

project implementation, and maintenance. Modern aero-

derivatives are also a feasible option for combined-cycle gas 

turbine and CHP applications where power in the 60-120 MW 

class is anticipated [17][32]. The GE LM6000 offers a 25% 

simple cycle power increase compared to the GE LM2500, 

owing to advanced technology. The advancement to the GE 

LM6000 gas turbine produces an 18% increase in exhaust 

energy and 25% increase in power and about 52% combined-

cycle efficiency. With GE's dry low emission (DLE) 

technology, an efficiency of about 56% can be attained 

though at slightly less power output [18]. About CHP, 

mention was made of the work done on an overall techno-

economic analysis of the gas turbine and absorption cooling 

(LiBr/Water) tri-generation plant. The effects of the use of 

different types of fuel, ambient conditions, part load 

conditions, degradation, or the extraction of power for district 

heating or absorption cooling were simulated [19]. The 

results suggested that the simple cycle tri-generation 

technology mode was more economically favorable than the 

conventional technology. The integrated tool was capable of 

helping potential investors decide if it is profitable to proceed 

with their investments in such technology [20]. It was also 

found that the thermal efficiency of aero-derivative engines 

combined-cycle units is higher than that of individual gas 

turbine or steam turbine units [21]. Regarding engine 

performance, how to model and establish the design point 

(DP) of a gas turbine was explained in detail. Besides, the 

method of obtaining its general performance over the entire 

operating range of power output and speed known as Off-

Design (OD) performance by the use of computer model 

simulations such as TURBOMATCH was vividly explored 

[22] [6] [23] [24]. This research investigates advanced cycle 

helicopter engines by the use of additional components to 

modify simple cycles. Also, the conversion of helicopter 

engines to small-scale aero-derivative industrial engines and 

its application in CHP in the petrochemical industry is 

investigated. 

A. Aero-Derivative Engines Combined-Heat-and-Power 

in the Petrochemical Industry 

Contemplating environmentally-friendly Brayton cycles in 

the petrochemical industry identification is made of 

combined heat-and-power (CHP) as one prominent 

application that would make gas turbine operation very 

pleasant to the environment in the sector in terms of fuel 

efficiency and reducing emissions. CHP simply defined is the 

simultaneous generation of mechanical power and heat 

energy in a single system from the same fuel input 

International Energy Agency (IEA). In light of this, the 

performance of aero-derivative gas turbines discussed earlier 

is herein examined in CHP application in the petrochemical 

industry. 

B. Petrochemical Industry Processes 

In this research, the petrochemical industry encompasses 

both refineries and petrochemical processing plants where 

crude oil and natural gas are transformed into various 

Hydrocarbon compounds and finished products. It is 

important to clarify that these industry processes are not 

treated here in detail but rather focus is only made on the 

process heat energy and electrical power demand of the plants. 

Petroleum refining is the mother industry for petrochemical 

industries [25]. Crude oil is refined and transformed into 

various products by three major processes: separation, 

conversion, and purification. The process of distillation in 

columns by boiling point differences is used to separate the 

various primary components of the crude by vaporizing it 

through the action of heat supplied by a furnace. Such 

fractions as gases, naphtha, jet oil, gas oil, heavy gas oil, and 

atmospheric residue, are tapped at various sections along the 

column. The distillation column temperature ranges from 

about 370°C at the bottom to about 30°C at the top. The 

conversion process is utilized to transform low-grade fuel oil 

into high-grade gasoline, and other lighter products. A 

catalytic cracking unit is employed to convert heavier 

hydrocarbons into petrol, liquefied petroleum gas, and diesel 

under the action of heat reforming is another conversion 

process used to increase petrol blends octane number, and to 

produce hydrogen that would further be used in the refinery. 
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 Finally, to meet specifications of product quality and 

environmental standards after separation and conversion, the 

resulting products are purified mainly to remove Sulphur. 

C. Petrochemical Processes 

Many processes occur in the petrochemical industry, but 

from the perspective of energy consumption, the most 

important technologies are steam cracking of heavier 

feedstock, polymerisation, and processing of aromatics [26]. 

In steam cracking feedstock such as naphtha and gas oil are 

converted at elevated temperatures into a wide array of 

products such as olefins (ethylene, propylene, and butylene), 

aromatics (benzene, toluene, and xylene), pyrolysis gasoline, 

and methane. Polymerisation is the process whereby small 

compounds called monomers are linked together to yield 

chains of larger products called polymers. Polymerisation 

technology is generally based on catalytic conversion at 

temperatures above 100°C and at elevated pressures. The four 

most important polymers (plastics) produced by this means 

are polyethylene, polypropylene, polystyrene, and polyvinyl 

chloride. 

D. Steam Utilization 

Many processes in the petrochemical industry occur at 

relatively moderate temperatures (below 600°C), and steam 

is generally the source of their heat energy supply. Steam 

could be generated by conventional boilers or heat recovery 

steam generators in CHP technology. It is worth stating that 

combined heat and power (CHP) generation of steam and 

electricity is presently a key energy saving, as well as 

environmentally-friendly technology in the petrochemical 

industry [26]. 

E. CHP Modeling 

CHP systems are either developed as "Topping cycles" or 

"bottoming cycles" Topping cycles describe systems where 

there occur primary power generation and subsequent heat 

utilization, whereas bottoming cycles pertain to systems 

where heat is primarily utilized with subsequent power 

generation [27]. In this research, a topping cycle arrangement 

is adopted where power is primarily generated from a gas 

turbine, and a heat recovery steam generator (HRSG) is 

designed to match process steam production. Performance 

parameters of the aero-derivative gas turbines discussed in 

the previous research are employed to determine the 

parameters of the HRSG. 

F. HRSG Performance Modeling 

A set of heat exchangers that utilises the exhaust heat of a 

gas turbine to produce steam is referred to as a heat recovery 

steam generator (HRSG). Three types of HRSGs are 

identified: unfired, supplementary fired, and exhaust fired. 

The most common and widely used HRSG is the unfired one 

because it is simple in design and cheap [28]. HRSG of the 

unfired type is considered here without recourse to the 

material dimension of the heat exchangers. It is pertinent to 

declare that only the thermodynamic performance in terms of 

the temperature profile of exhaust gas, steam 

temperature/flows, and heat capacity, of the HRSG are being 

modeled in this piece of work. Pinch/approach points 

technology was adopted in modeling the HRSG performance, 

and with a single steam pressure mode of operation. Whereas 

the approach point is the difference between the temperature 

of saturated steam and the temperature of water entering the 

evaporator, the pinch point is the difference between the gas 

temperature leaving the evaporator and the temperature of 

saturated steam [28]. Steam generation is directly affected by 

the pinch and approach points. Also affected is the exhaust 

gas/steam temperature profile. For the design case of an 

unfired HRSG, selection is usually made of the values of 

pinch and approach points; pinch point ranges from 10°C to 

30°C whereas approach point ranges from 5°C to 15°C based 

on the sizes of evaporators that can be built and shipped 

economically, and to maximize heat transfer rate between 

exhaust gas and steam streams. Using the notations in Figure 

1 above path 4-y-x-1 indicates the gas turbine exhaust gas 

temperature profile whereas path a-b-c-d-e indicates the 

steam temperature profile. Pinch point = Tx- Tc; approach 

point = Tc-Tb: process a-b occurs in the economiser; c-d in 

the evaporator; and d-e in the super-heater. 

 

Fig. 1: HRSG Exhaust Gas/Steam Temperature Profiles 

III. RESEARCH METHODS 

A. CHP Design Point Performance Modeling 

To model the design point performance of a CHP plant is 

necessary to match the parameters of HRSG with the design 

point of the gas turbine giving particular consideration to 

desired steam flow or temperature and saturation pressure. In 

doing so, pinch and approach points are selected by the 

engineering judgment, and from gas turbine exhaust gas flow, 

the HRSG temperature profile, duty, and steam flow are 

established. Using pinch technology and thermodynamic 

properties of steam, the computation of CHP HRSG 

gas/steam temperature profile and steam flow is as follows: 

Gas turbine exhaust gas temperature and mass flow are 

imported from gas turbine performance simulation while the 

HRSG pinch and steam saturation pressure (which fixes the 

steam saturation temperature Tc) are selected. In this design, 

the steam saturation pressure is 10 bar. With the notations of 

Figure 1, the temperature of exhaust gas at pinch point (Tx) is 

given by Equation 1. 

Tx = Tc + Pinch = Tc + 15 … … . . (1) 

Where pinch 15 

The superheated steam temperature (Te) is chosen as 

required by the industrial process heat demand. The steam 

flow (ws) is computed from total heat transfer in the super-

heater and evaporator using heat balance above pinch as 

defined by Equation 2 
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Q4x = Qevap + Qsuper; Q4x = wgcpa(0.99)(T4 − Tx) = ws[(he −

hc) + 0.02(hd − hc];  ∴ ws =
wgcpa(0.99)(T4−Tx)

(he−hc)+0.02(hd−hc)
 ………..(2) 

Where 0.99 = heat loss factor 

 0.02 = blow down factor 

 wg = exhaust gas flow 

 cpa = specific heat at constant pressure of air 

 he = specific enthalpy of super-heated steam 

 hc = specific enthalpy of saturated water 

 hd = specific enthalpy of saturated steam 

 T4 = gas turbine exhaust temperature 

 Qevap = evaporator duty 

 Qsuper = super-heater duty 

Equation 3 defines the super-heater duty (QSuper) 

Qsuper = ws(he − hd)                                … … … … . (3) 

 

 Gas temperature drop in the super-heater (▲T4y) is given by 

Equation 4 

∆T4y = Qsuperwgcpa(0.99)         … … … … . (4) 

 

This implies that exhaust gas temperature to the evaporator 

(Ty) is calculated using Equn 5 

Ty = T4 − ∆T4y                                              … … … … (5) 

 

Evaporator duty (Qevap) is determined with the aid of Equation 

6  

 

Evaporator duty Qevap = ws(hd − hc) … … … … . (6) 

Similarly, Equation 7 defines Economiser duty ( Qecon )  

Economiser duty Qecon = ws(1.02)(hc − ha) … … … … (7) 

Gas temperature drop in the economiser (▲Tx1 ) is given by 

Equation 8 

∆Tx1 =
Qecon

wgcpa(0.99)
                             … … … … … (8) 

 

This implies that exhaust gas exit temperature from the 

economiser (T1) is calculated using Equation 9 

T1 = Tx − ∆Tx1                               … … … … … (9) 

Electrical efficiency =
PE

PT

= ne   … … … … … . (10) 

The electrical efficiency could be assumed, such that Useful 

electric power generated PE = nΕ Χ Ρτ 

Where Pt = gas turbine power 

Equation 11 is used to compute CHP efficiency (nCHP) 

 

CHP efficiency nCHP =
PE + QHRSG

Qcomb
+

PE + QHRSG

FF x LHV
     … … … (11) 

Where FF = fuel flow in combustor  

LHV = Low heating value of fuel  

Qcomb = heat input in the combustor  

Power to heat ratio of the CHP is given by Equation 12 

Power to heat ratio =
PE

QHRSG

        … … … … … … … . . (12) 

[29] (Ganapathy, 1990) 

The CHP design point computation was done for the various 

categories of aero-derivative engines and the HRSG 

gas/steam temperature profiles as shown in Figure 2 to Figure 

4. 

 

Fig. 2: HRSG Temperature/Heat Profile for the Small-

Scale Aero-Derivatives 

 

Fig. 3: HRSG Temperature/Heat Profile for the 

Medium-Scale Aero Derivatives 

 

Fig. 4: HRSG Temperature/Steam Profile for the Large-

Scale Aero-Derivatives 

B. CHP Off-Design Performance  

The HRSG would normally not operate at the design point 

due to variations in the inlet gas conditions and steam 

parameters. The inlet gas conditions in turn would depend on 

gas turbine off-design variation in ambient conditions, firing 

temperature, altitude, etc. This makes the CHP plant exhibit 

varying outputs. The CHP off-design was modelled with 

input from the TURBOMATCH engine off-design. The off-

design performance results to the CHP of the small, medium, 

and large-scale aero-derivative engines are shown in Figure 5 

to Figure 10 below. 
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IV. RESULTS DISCUSSION 

A. Small-Scale Aero-Derivative CHP 

At design and off-design points, the RC and ICR aero-

derivative engines exhibit better CHP efficiency than the SC 

engine in the small-scale category. The CHP efficiencies are 

observed to increase with increases in both TET and ambient 

temperature. The percentage increases in RC and ICR CHP 

efficiencies over SC are 16.5% and 3.8% respectively. This 

superior performance is due to the lower heat input from 

burning less fuel in the advanced cycle engines. Nevertheless, 

the SC engine produces more HRSG duty than the ICR one 

due to lower exhaust gas temperature and steam rate of the  

ICR aero-derivative, whereas the highest HRSG duty is 

produced by the RC engine because of its higher exhaust gas 

temperature and steam rate. 

B. Medium and Large-Scale Aero-Derivative CHP 

Both medium and large-scale aero-derivative engines are 

observed to perform in a similar trend in CHP application. 

CHP efficiency increases with increasing TET and ambient 

temperature in all cycle configurations in these categories of 

aero derivatives. The SC CHP is observed to show higher 

CHP efficiency than the IC and ICR CHP. The superior 

performance of SC CHP is a result of its higher HRSG duty 

due to its higher exhaust gas temperature compared to others. 

Although less fuel is utilised in the advanced cycles than in 

the SC, the decrease in combustor heat rate in the advanced 

cycles is minute compared with the huge increase in exhaust 

gas temperature and steam rate of the SC CHP as illustrated 

in figures 5 to 10. 

 

Fig. 5: Effect of Ambient Temperature on HRSG Duty 

for the Small-Scale Aero-Derivative Engines 

 

Fig. 6: Variation of CHP and GT Efficiency with TET 

for the Small-Scale Aero-Derivative Engines 

 

Fig. 7: Effect of TET on CHP and GT Efficiencies for the 

Medium-Scale Aero Derivative Engines 

 

Fig. 8: Variation of HRSG Duty with Altitude for the 

Medium-Scale Aero-Derivative Engines 

 

Fig. 9: Variation of HRSG Duty with TET for the Large-

Scale Aero-Derivative Engine 

 

Fig. 10: Effect of Ambient Temperature on HRSG Steam 

Flow for the Large-Scale Aero-Derivative Engine 
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V. CONCLUSION 

The literature review has aided the understanding of 

helicopter engines, aero-derivative industrial gas turbines, 

combined heat-and-power performance analyses, and the 

need for emphasis on the environmental-friendliness of gas 

turbine engines generally. More so, the research shows the 

implementation of the engine performance models of simple 

and advanced cycle helicopters and aero-derivative gas 

turbines was established. In doing so, the helicopter engine 

was converted to a small-scale aero-derivative engine. In 

continuation, the engine performance module was completed, 

and aero-derivative engines CHP performance modeling has 

been achieved. In this wise, small, medium, and large-scale 

aero-derivative industrial gas turbines were assessed in CHP 

performance. The contribution to knowledge has been 

conceptualised as the derivation of simple and advanced 

cycle small-scale aero-derivative industrial gas turbines from 

helicopter engines. These stemmed from the objectives of the 

research. The scenario assessment was undertaken to 

illustrate the performance of the model and its suitability to 

satisfy the aim and requirements of this research. The results 

have shown consistency with trends available in the literature. 
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