

Implementation of A Delay-Tolerant Routing Protocol in the Network Simulator NS-3

Sumith, Vikaas Karthik K, Sandhya S

Abstract: The paper explores the implementation of the Epidemic Routing Protocol using the NS-3 simulator, focusing on its application in intermittently connected networks like Mobile Adhoc Networks (MANETs). The Epidemic Protocol maximizes message delivery by flooding the network with multiple copies, ensuring reliability even in sparse or highly mobile environments. Through NS-3 simulations, the study examines the protocol's performance, considering factors such as network size, node mobility, and message Time-To-Live (TTL). The simulation, which models an ad-hoc wireless network using IEEE 802.11b, demonstrates that the protocol achieves a 100-percentage packet delivery ratio with minimal latency. Tools like NetAnim provide detailed insights into node interactions and message dissemination, highlighting the protocol's effectiveness in maintaining communication under challenging conditions. The paper concludes that while the Epidemic Protocol is resourceintensive, it is highly effective for scenarios where traditional routing methods fail, offering a reliable solution for dynamic and partitioned network.

Index Terms: Epidemic Protocol, Delay-Tolerant Routing Protocol (DTRP), Mobile Adhoc Networks (MANETs), NetAnim, NS3.

I. INTRODUCTION

In MANETs, the nodes are free to move and self-organize, making the network topology highly dynamic and unpredictable. Traditional MANET routing protocols assume that the network is dense enough to be fully connected, ensuring a path between every node. However, in many scenarios, such as disaster relief operations and military deployments, the network may be sparse, leading to frequent partitions. These networks, where contemporaneous end-to-end path may not exist, belong tothe category of Delay/Disruption-Tolerant Networks (DTNs) [1][2][3]. Epidemic Routing is a fundamental DTN routing protocol designed to maximize message delivery probability in such challenging environments. It works by continuously replicating and propagating messages across the network, leveraging node mobility to eventually deliver messages to their destinations.

Manuscript received on 02 September 2024 | Revised Manuscript received on 05 October 2024 | Manuscript Accepted on 15 October 2024 | Manuscript published on 30 October 2024.

*Correspondence Author(s)

Sumith, Department of Computer Science and Engineering, R V College of Engineering, Bangalore (Karnataka), India. E-mail: sumithmpchawan100@gmail.com

Vikaas Karthik K*, Department of Computer Science and Engineering, R V College of Engineering Bangalore (Karnataka), India. E-mail: vikaaskarthik.k@gmail.com

Dr. Sandhya S, Department of Computer Science and Engineering, R V College of Engineering Bangalore (Karnataka), India. E-mail: sandhya.sampangi@rvce.edu.in

© The Authors. Published by Blue Eyes Intelligence Engineering and Sciences Publication (BEIESP). This is an <u>open access</u> article under the CC-BY-NC-ND license <u>http://creativecommons.org/licenses/by-nc-nd/4.0/</u>

This protocol simplicity and robustness make it a valuable candidate for applications requiring high delivery success rates in highly dynamic and partitioned networks.

II. ARCHITECTURE OF DTN

In the DTN architecture, a bundle layer facilitates the connection between the application and transport layers of the network, as depicted in Figure 1. This architecture employs a store–carry–forward mechanism, where messages are stored in intermediate nodes for extended periods while being transmitted to their destination [4]. The Bundle Protocol ensures reliable data transmission by enabling message retransmission through intermediate nodes. It accommodates intermittent connectivity by incorporating a buffer at each node, allowing for data storage and transfer even in unpredictable conditions. This protocol supports various connectivity methods, including scheduled, predicted, and opportunistic connections, and is designed to operate effectively in heterogeneous environments

Application	Application
	Bundle
Network	Network
Transport	Transport
Link	Link
Physical	Physical

Fig. 1: Comparison Between TCP/IP and DTN Layers

III. REALTED WORK

An improvement to the traditional Epidemic Routing Protocol is proposed by introducing energy level and buffer size constraints. These enhancements aim to reduce network congestion, increase message delivery ratio, and minimize dropped messages by ensuring that only nodes with sufficient battery life and buffer space participate in data transmission. The modifications lead to a more efficient and reliable routing process within Delay Tolerant Networks [5][6]. The paper examines how epidemic routing performs in dense delay tolerant network DTNs. It highlights a phase transition in the probability of successful delivery based on node density, introduces fluid approximations using Ordinary Differential Equations (ODEs) to evaluate this behaviour, and validates them through simulations, offering insights into optimizing routing strategies in non-sparse networks [7].

Published By: Blue Eyes Intelligence Engineering and Sciences Publication (BEIESP) © Copyright: All rights reserved.

Retrieval Number:100.1/ijese.K258612111024 DOI: <u>10.35940/ijese.K2586.12111024</u> Journal Website: www.ijese.org

Implementation of A Delay-Tolerant Routing Protocol in the Network Simulator NS-3

A comparison of the performance and design of Epidemic Routing (ER) and Named Data Networking (NDN) in DTNs is presented [8][9]. It highlights that while ER adapts traditional IP for intermittent connectivity, NDN's inherent data centric design offers superior efficiency, built-in security, and robustness in DTN environments. The paper provides a comparative and empirical analysis of routing protocols for DTNs, focusing on improving data delivery ratio and reducing delays [10]. DTN routing protocols are categorized into four types: encounter-based, time-based, infrastructure-based, and hybrid. The paper also empirically evaluates protocols such as Epidemic, PROPHET, and Spray and Wait using performance metrics like delivery probability, overhead, and message drop rate. A novel routing protocol for DTNs based on the Catalan series is proposed by improving the Binary Spray and Wait protocol [11]. Simulations reveal the Catalan protocol achieves higher delivery ratios, reduced overhead, and faster convergence than traditional protocols, particularly in environments with intermittent connectivity, such as vehicular and pedestrian scenarios. The paper proposes a routing protocol for UAV-assisted Vehicular Delay Tolerant Networks (VDTNs) [12-20]. It introduces a new metric, persistent connection time, to improve message forwarding by better accounting for UAV capabilities. Simulations show that the protocol enhances message delivery reliability, reduces network overhead, and minimizes delays compared to existing protocols. A comparative analysis of various opportunistic routing protocols in DTNs using the Adyton simulator. It evaluates protocols like EPIDEMIC, under different mobility models and buffer sizes, finding Simbetts to be generally superior. An optimization of the Spray and Wait (SW) routing protocol for DTNs. The optimization involves dividing the spraying phase into two parts, with each part spraying half the copies and adjusting the message lifetime [21][22][23]. Simulations on the ONE platform show that this method reduces average transmission delay and node cache time, with a slight reduction in delivery rate. The discussion of essential characteristics of DTNs, which are crucial in environments with poor connectivity. It reviews research challenges, routing protocols, and various applications across multiple domains, including space, disaster recovery, and IoT. The paper also highlights the importance of security, buffer management, and energy optimization in DTNs. The paper focuses on optimizing distribution paths for logistics vehicles in urban rail transportation using a Vehicle Routing Problem (VRP) model. It aims to enhance delivery efficiency by optimizing vehicle routes, considering various constraints like delivery time windows and vehicle capacity. The study uses advanced algorithms to minimize total transportation costs and improve logistics service quality. The paper proposes a P-Epidemic routing scheme to improve message delivery in DTNs [24-30]. By adjusting transmission probabilities based on node resources like buffer size, the method enhances delivery probability and reduces message overhead compared to traditional epidemic routing. The paper presents a systematic review of Opportunistic Networks

, focusing on routing protocols in DTNs. It analyzes stateof-the-art routing approaches, highlights their challenges, and provides insights into security, performance factors, and simulation tools. The paper also identifies gaps and potential future directions in OppNet research, with applications in various fields like disaster recovery and mobile sensing. The paper explores the use in industrial applications, particularly for mobile robots. It models and tests DTNs in industrial

Retrieval Number:100.1/ijese.K258612111024 DOI: <u>10.35940/ijese.K2586.12111024</u> Journal Website: www.ijese.org settings, demonstrating their viability for various tasks with high latency tolerance. The study concludes that DTNs can enhance industrial communications, especially for autonomous robots, and identifies future research directions.

IV. EPIDEMIC ROUTING PROTOCOL

Epidemic Routing Protocol is designed to enable fast dissemination of messages across a network. In this protocol, the sender forwards the message to every neighbouring node, which then continues to propagate the message to their own neighbours', resulting in a widespread distribution. This method ensures a high message delivery ratio, as it maximizes the chances that at least one copy of the message will reach the intended destination.

The figure 2 illustrates the message exchange process in Epidemic Routing. In this protocol, two nodes (A and B) within communication range regularly compare their stored messages. The arrows represent the exchange of messages: Node A sends message 1 to Node B, Node B sends message 2 to Node A, and Node A sends message 3 to Node B. This frequent exchange, governed by a cycle-time parameter, ensures optimal delivery rates but increases resource usage.

Fig. 2: Message Advertisement (1), Request (2), and Message Transmission (3) in Message Exchange Process in Epidemic Routing

A. Transmission Process

The figure 3 flowchart describes a cautious approach to message dissemination in Epidemic Routing. Unlike the pure flooding mechanism, this process incorporates checks on the receiving node's buffer space and energy levels before forwarding messages.

This approach helps mitigate the potential downsides of Epidemic Routing, such as buffer overflow, energy depletion, and unnecessary traffic, by ensuring that only capable nodes participate in message forwarding. • It adds efficiency to the basic Epidemic Protocol by selectively forwarding messages, which can be particularly beneficial in energy-constrained or resource- limited networks.

V. NS-3 SIMULATION OVERVIEW

This NS-3 simulation script models a simple ad-hoc wireless network using the IEEE 802.11b standard, with five nodes deployed in a grid layout. The script sets up the nodes to communicate using UDP (User Datagram Protocol), simulating traffic generation and reception with applications designed to mimic an epidemic routing protocol. The simulation includes mobility, where nodes can move around randomly, and utilizes tools like PCAP for packet tracing and NetAnim for visualization.

A. Simulation Setup

This section elaborates simulation set as follows:

- Node Creation: The simulation begins by creating five nodes, each representing a device in the network. These nodes are arranged in a grid pattern, with each node initially placed at specific coordinates using the GridPositionAllocator.
- Wi-Fi Configuration: The Wi-Fi network is configured using the IEEE 802.11b standard, which operates at 2.4 GHz and supports data rates of up to 11 Mbps. The YansWifiChannelHelper and YansWifiPhyHelper are used to set up the wireless channel and physical layer, respectively. The AdhocWifiMac is used to ensure that the nodes communicate in ad-hoc mode, which is suitable for decentralized network setups without a central access point.
- Mobility Model: The RandomWaypointMobilityModel is applied to simulate node movement. Nodes move randomly within the simulation area, pausing occasionally before changing direction and speed. This mobility model is common in simulations of mobile adhoc networks (MANETs) where devices can move freely.
- Internet Stack and IP Assignment: Each node is equipped with the Internet stack, allowing them to communicate using IP addresses. The Ipv4AddressHelper assigns IP addresses to each node's network interface, ensuring unique addressing for proper communication.
- Traffic Simulation: The On Off Application is used to generate UDP traffic from one node to another. In this case, Node 0 sends packets to Node 1 at a constant rate of 1 Mbps, with a packet size of 1024 bytes. A Packet Sink application is installed on all nodes to receive the traffic, simulating the reception of epidemic protocol messages.
- NetAnim: An XML file is generated for visualization in NetAnim, allowing you to see node movements and packet transmissions in a graphical interface.

VI. SIMULATION RESULTS

A. The Results are as Follows

After Running Simulation, we observe that. The simulation and data align perfectly, showing a sequence of packet

Retrieval Number:100.1/ijese.K258612111024 DOI: <u>10.35940/ijese.K2586.12111024</u> Journal Website: www.ijese.org exchanges between nodes with precise timing. Node 0 sends a packet to Node 1, which then relays it to Node 2. The 10ms delay observed in both sending and receiving confirms accurate network communication modelling during the simulation.

Fig. 4: Nodes Representation using NetAnim

- NetAnim Visualization: The above figure 4 represented on a grid, moving dynamically while exchanging packets, between nodes illustrate packet transmission, each simulation step revealing message with propagation across the network. For example, at 1.0s, from Node 0 to Node 1, indicating the packet's journey, providing a clear, animated depiction of network communication. This visualization helps in understanding how data flows between nodes, reflecting the interactions observed in the simulation and analysis.
- Performance Metrics: Explanation of the Sample Data:
- 5 Nodes: Packets Sent: 100, Packets Received: 90 (10% packet loss), Average Delay: 12 ms
- 10 Nodes: Packets Sent: 200 Packets Received: 170 (15% packet loss), Delay: 20 ms
- Packet Delivery Ratio: The figure 5 will show a packet delivery ratio of 90% for 5 nodes and 85% for 10 nodes. This demonstrates that as the number of nodes increases, packet loss also increases due to higher network contention, collisions, or mobility-related issues.
- Average Delay: The line graph will show an increase in average delay from 12 ms for 5 nodes to 20 ms for 10 nodes. This reflects the additional time it takes for packets to reach their destination as the network becomes busier and more congested.

Fig. 5: Packet Delivery and Average Delay

Published By: Blue Eyes Intelligence Engineering and Sciences Publication (BEIESP) © Copyright: All rights reserved.

Implementation of A Delay-Tolerant Routing Protocol in the Network Simulator NS-3

This graph will help visualize the trade-offs in a MANET as the network grows, showing that increasing the number of nodes can lead to more packet loss and higher latency. This is typical of MANET environments where node mobility and limited bandwidth often result in performance degradation as the network scales.

VII. CONCLUSIONS

In this paper, NS-3 based implementation of the epidemic routing protocol in a MANET environment showcased the protocol's ability to maintain reliable communication with minimal latency, even under the challenging conditions posed by frequent node mobility. The results indicate that the epidemic routing protocol is not only effective in ensuring packet delivery but also efficient in minimizing delays, thus offering a viable solution for real-world applications in mobile and wireless networks. By successfully delivering all packets with an average delay of just 10 milliseconds, the simulation demonstrates the potential of epidemic routing to enhance network performance in MANETs, making it a valuable addition to the suite of routing protocols available for these types of networks. The combination of detailed simulation data, including NetAnim visualization, provides а comprehensive understanding of how the protocol operates and its impact on network performance, reinforcing the importance of selecting the right routing protocol for MANET environments.

DECLARATION STATEMENT

After aggregating input from all authors, I must verify the accuracy of the following information as the article's author.

- Conflicts of Interest/ Competing Interests: Based on my understanding, this article has no conflicts of interest.
- **Funding Support:** This article has not been sponsored or funded by any organization or agency. The independence of this research is a crucial factor in affirming its impartiality, as it has been conducted without any external sway.
- Ethical Approval and Consent to Participate: The data provided in this article is exempt from the requirement for ethical approval or participant consent.
- Data Access Statement and Material Availability: The adequate resources of this article are publicly accessible.
- Authors Contributions: The authorship of this article is contributed equally to all participating individuals.

REFERENCES

- More, A., Kale, R. (2022). "Review on Recent Research Trends and Applications in Delay Tolerant Networks," 2022 6th International Conference On Computing, Communication, Control And Automation (ICCUBEA). https://doi.org/10.1109/ICCUBEA54992.2022.10011041
- T. Li, Z. Kong and L. Zhang,"Supporting Delay Tolerant Networking: A Comparative Study of Epidemic Routing and NDN," 2020 IEEE International Conference on Communications Workshops (ICC Workshops), Dublin, Ireland, 2020
- P. Gopalakrishnan et al., "Routing protocol Analysis for Heterogeneous Nodes in a Dynamic and Sparse Environment," 2020 11th International Conference on Computing, Communication and Networking Technologies (ICCCNT), Kharagpur, India, 2020 https://doi.org/10.1109/ICCCNT49239.2020.9225354
- Z. Du et al., "A Routing Protocol for UAV-Assisted Vehicular Delay Tolerant Networks," in IEEE Open Journal of the Computer Society, vol. 2, pp. 85-98, 2021 <u>https://doi.org/10.1109/OJCS.2021.3054759</u>
- 5. Vineeth B.S., Chandramani Sing, "Stability and average delay in delay tolerant networks with Poisson packet arrivals and buffered relay

Retrieval Number:100.1/ijese.K258612111024 DOI: <u>10.35940/ijese.K2586.12111024</u> Journal Website: <u>www.ijese.org</u> nodes", Performance Evaluation, Volumes 157–158, 2022, sciencedirect.com <u>https://doi.org/10.1016/j.peva.2022.102319</u>

- C. Sauer, M. Schmidt and M. Sliskovic, "Delay Tolerant Networks in Industrial Applications," 2019 24th IEEE International Conference on Emerging Technologies and Factory Automation (ETFA), Zaragoza, Spain, 2019 <u>https://doi.org/10.1109/ETFA.2019.8869173</u>
- S. Taileb, S. Loucif and M. O. Khaoua, "On the Performance of Epidemic DTN Routing on Low-Power and Lossy Networks," 2023 2nd International Conference on Electronics, Energy and Measurement (IC2EM), Medea, Algeria, 2023, pp. 1-5. https://doi.org/10.1109/IC2EM59347.2023.10419800
- Verma, A., Savita and Kumar, S. Routing Protocols in Delay Tolerant Networks: Comparative and Empirical Analysis. Wireless Pers Commun 118, 551–574. Springer Nature 2021. <u>https://doi.org/10.1007/s11277-020-08032-4</u>
- Y. Raval, J. Gandhi and N. Pandya, "A Review of Opportunistic Routing Protocols on Various Parameters," 2022 6th International Conference on Computing Methodologies and Communication (ICCMC), Erode, India, 2022, pp. 221-227. <u>https://doi.org/10.1109/ICCMC53470.2022.9753737</u>
- I. A. Shah, M. Ahmed and A. Yadav, "A Novel Delay Tolerant Routing Protocol for Opportunistic Networks," 2024 IEEE 9th International Conference for Convergence in Technology (I2CT), Pune, India, 2024, pp. 1-6, doi: 10.1109/I2CT61223.2024.10543686. https://doi.org/10.1109/I2CT61223.2024.10543686
- 11. Yong Li, Pan Hui, Depeng Jin, and Sheng Chen., "Delay-Tolerant Network Protocol Testing and Evaluation" IEEE Communications Magazine.
- Yao, L., Bai, X. and Wang, Z., 2023, April. An Overview of Intelligent Algorithm-Based Routing in Delay Tolerant Networks. In 2023 8th International Conference on Computer and Communication Systems (ICCCS) (pp. 345-350). IEEE https://doi.org/10.1109/ICCCS57501.2023.10150521
- N. P. Douglass, J. Langel, W. J. Moore, L. Ng, R. M. Dudukovich and S. Mal-Sarkar, "Application of FountainCode to High-Rate Delay Tolerant Networks," in IEEE Access, vol. 11, pp <u>https://doi.org/10.1109/ACCESS.2023.3315659</u>
- R. Dalal, M. Khari, J. P. Anzola and V. Garc'ıa-D'ıaz, "Proliferation of Opportunistic Routing: A Systematic Review," in IEEE Access, vol. 10, pp. 5855-5883, 2022. <u>https://doi.org/10.1109/ACCESS.2021.3136927</u>
- Perumal, S., Raman, V., Samy, G.N., Shanmugam, B., Kisenasamy, K. and Ponnan, S., 2022. Comprehensiveliterature review on delay tolerant network (DTN) framework for improving the efficiency of internet connection in rural regions of Malaysia. International Journal of f System Assurance Engineering and Management, 13(Suppl 1), pp.764-777. https://doi.org/10.1007/s13198-022-01632-2
- Mishra, S.K. and Gupta, R., 2022. Routing protocolsin an opportunistic network: A survey. In Computer Networks, Big Data and IoT: Proceedings of ICCBI 2021 (pp. 185-195). Singapore: Springer Nature Singapore <u>https://doi.org/10.1007/978-981-19-0898-9_14</u>
- Rashidi, L., Towsley, D., Mohseni-Kabir, A. and Movaghar, A. On the performance analysis of epidemic routing in non-sparse delay tolerant networks. 2022 IEEE Transactions on Mobile Computing. <u>https://doi.org/10.1109/TMC.2022.3144683</u>
- Rajput, D.S. and Ahmed, S.T., Evaluating the Performance of Delay Tolerant in Network Routing Protocols. 2022 International Journal of Computational Learning & Intelligence, 1(1), pp.1-8.
- Sonkar, N., Pandey, S. and Kumar, S., A novel scheme to deploy the throwboxes in delay tolerant networks. In Computer Networks and InventiveCommunication Technologies: Proceedings of Fifth ICCNCT 2022 (pp. 669-681). Singapore: Springer Nature Singapore. https://doi.org/10.1007/978-981-19-3035-5_50
- Madoery, P.G., Kurt, G.K., Yanikomeroglu, H., Hu, P., Ahmed, K., Martel, S. and Lamontagne, G., 2023. Routing Heterogeneous Traffic in Delay-Tolerant Satellite Networks. IEEE Journal of Radio Frequency Identification. <u>https://doi.org/10.1109/JRFID.2023.3269887</u>
- Ghafouri-ghomi, Z. and Rezvani, M.H., An optimized message routing approach inspired by the landlord-peasants game in disruptiontolerant networks. Ad Hoc Networks, 2022 127, p.10278 <u>https://doi.org/10.1016/j.adhoc.2022.102781</u>
- Sommer, M., Hochst, J., Sterz, A., Penning, A. and Freisleben, B., " ProgDTN: Programmable Disruption- Tolerant Networking. 2022, May. In International Conference on Networked Systems (pp. 184-200). Cham: Springer International Publishing <u>https://doi.org/10.1007/978-3-031-17436-0_13</u>

Published By: Blue Eyes Intelligence Engineering and Sciences Publication (BEIESP) © Copyright: All rights reserved.

- 23. Harrati, Y. and Abdali, A., Performance Analysis of Adaptive Fuzzy Spray and Wait Routing Protocol. 2019.J. Commun., 14(8), pp.739-744 https://doi.org/10.12720/jcm.14.8.739-744
- 24. Ahmed, M., Goyal, S., Singh, S., & Gupta, J.,. An improved Spray and Wait routing protocol for Delay Tolerant Network. In 2019 2nd IEEE Middle East and North Africa Communications Conference (MENACOMM) 1-6).IEEE. (pp. https://doi.org/10.1109/MENACOMM46666.2019.8988574
- 25. Mass, J., Srirama, S.N. and Chang, C., 2020. STEP-ONE: simulated testbed for edge-fog processes based on the opportunistic network environment simulator. Journalof Systems and Software, 166, p.110587. https://doi.org/10.1016/j.jss.2020.110587
- 26. Heru Nurwarsito, Naldo Steven Sirait, Detecting Blackhole Attack using Encounter Records on Multi-Copy Routing Protocols in Delay Tolerant Networks (DTN). (2020). In International Journal of Innovative Technology and Exploring Engineering (Vol. 9, Issue 3S, pp. 152-157). https://doi.org/10.35940/ijitee.c1034.0193s20
- 27. Sreekanth, G. R., Suganthe, R. C., & Latha, R. S. (2019). Performance Improvement of DTN Routing Protocols with Enhanced Buffer Management Policy. In International Journal of Recent Technology and Engineering (IJRTE) (Vol. 8, Issue 4, pp. 9852-9857). https://doi.org/10.35940/ijrte.d9145.118419
- 28. Baig, M. A. (2021). An Efficient Cluster Based Routing Protocol (ECCRP) Technique Based on Weighted Clustering Algorithm for Different Topologies in Manets using Network Coding. In Indian Journal of Data Communication and Networking (Vol. 1, Issue 2, pp. 31-34). https://doi.org/10.54105/ijdcn.b5011.041221
- 29. R, M. C., & Ramakrishna, M. (2019). An Assessment on Energy Efficient Protocols for MANETS. In International Journal of Engineering and Advanced Technology (Vol. 9, Issue 1, pp. 1556-1561). https://doi.org/10.35940/ijeat.a1349.109119
- 30. Saroj, S. K., Yadav, M., Jain, S., & Mishra, R. (2020). Performance Analysis of Q-Leach Algorithm in WSN. In International Journal of Inventive Engineering and Sciences (Vol. 5, Issue 10, pp. 1-4). https://doi.org/10.35940/ijies.i0977.0651020

Disclaimer/Publisher's Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of the Blue Eyes Intelligence Engineering and Sciences Publication (BEIESP)/ journal and/or the editor(s). The Blue Eyes Intelligence Engineering and Sciences Publication (BEIESP) and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Retrieval Number:100.1/ijese.K258612111024 DOI: 10.35940/ijese.K2586.12111024 Journal Website: www.ijese.org

Published By: