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Abstract: The performance of gas turbines is highly susceptible 

to environmental factors, particularly in arid and hot climates. The 

present study examines the direct impact of ambient temperature 

on the gas turbine's performance under the climatic conditions of 

Karbala city. An Excel proprietary software modeled using the law 

of energy and mass conservation was used to simulate real data 

collected from the Karbala power plant (gas turbine). The 

simulation result was found for the gas turbine power plant with 

steadily increasing compressor entry temperature (T1). The result 

show that for a 40K temperature rise from 300K-340K at the 

compressor inlet stage, net power gained a 13.34% increment; 

thermal efficiency gained a 13.33% increment and a reduction in 

the specific consumption of fuel (SFC) by 12% was noticed. The 

effect was acknowledged to be a resonating one rather than direct. 

Recommendations suggest that a pre-compressor cooling 

technology be developed and incorporated with a high efficiency 

pre-combustor heating technology for compressor reduction and 

SFC reduction. Best practice. 

Keywords: Compressor Cooling, Gas Turbine, Net Power, 

Performance Enhancement, Thermal Efficiency 

I. INTRODUCTION

The working fluid, air, is converted by gas turbines into

high-temperature, high-pressure gas, which powers the 

turbine engine (Li et al., 2018) [1]. In order to produce 

electrical power, thermodynamic energy is transformed into 

mechanical energy. The system's three primary 

components—the turbine/engine, the combustion chamber 

(combustor), and the gas compressor—all work together to 

produce power (Yazdani et al., 2020) [2]. An essential 

component of the Gas Powerplant (GPP) is the combustor, 

which is utilized to compensate for the energy lost in the 

working gas after it leaves the compressor (Liang et al., 2020; 

Bao et al., 2019) [3][4].  
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Several factors pertaining to the functioning processes of 

each component in the GPP are taken into account when 

determining the gas turbine's power quality. Many studies and 

investigations have focused on improving the power output 

of gas turbines, and it has been determined that improving the 

pre-turbine process (at the compressor and 

combustor sections) can have a positive impact on the overall 

efficiency and power output (Matjanov, 2020) [5]. Cooling 

the air entering the compressor is believed to be one of the 

best ways to improve gas turbine performance, particularly in 

hot climates (Al-Ibrahim & Varnham, 2010; Baakeem et al., 

2018) [6][7]; consequently, a lot of researchers have worked 

on this subject. After comparing various approaches to 

increase gas turbine efficiency, researchers (Omidvar, 2001; 

Espanani et al., 2013) [8][9][48][49][50] came to the 

conclusion that cooling the compressor's incoming air is the 

most effective strategy. According to the researchers 

(Ukwuaba et al., 2020) [10], the plant's efficiency can be 

increased by adding a wetted substance evaporative cooler. 

Thermal efficiency and net power output decrease by 

approximately 3% and 10%, respectively, if the surrounding 

temperature reaches 50°C (Kadhim et al., 2020; Alhwayzee 

et al., 2021) [11][12]. Alhazmy et al. (2006) [13] investigated 

how the temperature and moisture content of the study area 

affected the gas turbine's performance and found that direct 

mechanical cooling raised the gas turbine's daily capacity by 

6.77%. Sanjay and Mohapatra (2014) [14] found that adding 

a vapor-compression chiller to a combined cycle increases the 

gas turbine's output and efficiency by 14.77% and 4.88%, 

respectively. According to Orhorhoro et al. (2016) [15], the 

average increase in station capacity was 3.631 MW, and when 

cold air was brought into the compressor entrance, there was 

a discernible rise in efficiency from 33.279% to 36.855%. 

Additionally, the researchers found that the most affordable 

strategy to increase the gas turbine's performance is to cool 

the air that enters the machine (Kim et al., 2012). Even though 

it is extremely unlikely, the potential for erosion and 

corrosion when water is sprayed with air at the gas turbine's 

inlet is a limiting issue (Sanaye & Tahani, 2010) [17]. Since 

the compressor is an essential component of the gas turbine, 

it directly affects the production of the plant, therefore the 

technology of cooling air entering the compressor can be used 

(Shukla et al., 2018; Ibrahim et al., 2017; Rashid et al., 2017; 

Al-Jibory et al., 2018; Rashid et al., 2018; Al-Jibory et al., 

2020; Hussein et al., 2020) 

[18][19][20][21][22][23][24][25][40][41][42]. Barakat et al., 

(2019) [26][27], tested a hybrid cooling system that included 

an underground heat exchanger.  

https://www.openaccess.nl/en/open-publications
https://doi.org/10.35940/ijese.J9956.12090824
https://doi.org/10.35940/ijese.J9956.12090824
http://www.ijese.org/
mailto:enyiajames@yahoo.com
https://orcid.org/0000-0001-9442-7459
0000-0001-9442-7459
0000-0001-9442-7459
mailto:engrdaneosimasu@gmail.com
mailto:pauluzoma07@gmail.com
mailto:stanleyjdenyia07@gmail.com
https://www.openaccess.nl/en/open-publications
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://crossmark.crossref.org/dialog/?doi=10.35940/ijese.J9956.12090824&domain=www.ijese.org


 
Gas Turbine Performance Enhancement and Evaluation for Power Generation in the City of Karbala, Iraq 

                                          27 

Published By: 

Blue Eyes Intelligence Engineering 

and Sciences Publication (BEIESP) 
© Copyright: All rights reserved. 

Retrieval Number: 100.1/ijese.J995613100924 

DOI: 10.35940/ijese.J9956.12090824 

Journal Website: www.ijese.org 

Their results indicated that this system reduces the water 

consumed for gas turbine cooling. 

II. LITERATURE REVIEW 

One of Saudi Arabia's most significant and expanding 

industries is power generation, which is essential to the 

country's economic growth and driven industrialization plans. 

The Kingdom of Saudi Arabia is situated in the southwest of 

Asia, bordered by Jordan, Iraq, Kuwait, Bahrain, Qatar, 

Emirates, Oman, and Yemen. Its land and coastal boundaries 

are 4431 and 2640 km, respectively, and it occupies an area 

of more than 2 million square kilometers; virtually all of this 

land is used for desertification and agriculture, and its climate 

is generally harsh and dry with extremes of temperature (Di 

et al., 2019) [28]. The main power generation facilities in the 

Kingdom are diesel, steam, and modern gas turbine facilities 

used in single or combined cycle modes (Gang et al., 2017; 

Abazar & Majid, 2011; Peyman & Sadegh, 2020) 

[29][31][32]. In 2012, 571 gas turbine units produced 50% of 

the total capacity, while 104 steam turbine units, 68 combined 

cycle units, and 83 diesel engine units produced 39%, 10%, 

and 1% of the total capacity, respectively (Abazar & Majid, 

2011) [30]. The International Standards Organization (ISO) 

rates the production capacity of gas turbines, specifying the 

following reference air inlet conditions: air 15°C (59°F), 

relative humidity 60%, and absolute pressure (sea-level) 

101.325 kPa (14.7 psia). Gas turbines are considered constant 

volumetric flow rate machines that use ambient air as the 

working fluid (Peyman et al., 2018; Sadeghzadeh et al., 2015) 

[33]. As a result, ambient conditions (temperature, humidity, 

and pressure) are considered important factors affecting the 

performance of such power plants. (Sadeghzadeh et al., 2015; 

Kousuke et al., 2005; Campbell & Rohsenow 1992; Stasiek 

1998 Oiu-wang et al., 2014; Ting et al., 2016) 

[34][35][36][37][38]. According to Kousuke et al. (2005), 

there are more than 170 gas turbine units in Iran with a total 

combined capacity of 9500 MW; 20% of this capacity is lost 

during the summer. The study focused on the performance of 

gas turbines at varying ambient temperature for specific 

turbines SGT 94.2 and SGT 94.3 installed at the Dewa Power 

Station located at Al Aweer, H Phase II and III in Dubai, 

UAE. The researchers found that for every 1°C rise in 

ambient temperature above ISO conditions, the units lose 

0.1% in terms of thermal efficiency and 1.47 MW of gross 

(useful) power output. From the performance curves of the 

gas turbines, they concluded that for each 1 °C increase in 

ambient air temperature, the power output will decrease by 

0.74%, and the air mass flow rate decrease by 0.36%. Oiu-

wang et al., (2014) tested the production of a simple gas cycle 

in the central Qaseem region of Saudi Arabia. They reported 

that a high mid-day ambient temperature during the summer 

can cause a 24% decrease in system capacity (Di et al., 2019). 

Xusheng et al., (2019) [43][44][45] studied theoretically the 

effect of the average hourly temperature and relative 

humidity on the performance of a typical gas turbine unit used 

in three Saudi regions: Dammam, Riyadh, and Jeddah. The 

obtained results showed that both ambient temperature and 

humidity have significant effects on the gas turbine 

performance. They reported that due to weather variation, the 

maximum electricity production losses were 20%, 18% and 

17.5% of ISO production in Riyadh, Dammam, and Jeddah, 

respectively. More recently, the energy and exergy analysis 

of 42 MW typical gas turbine was presented by Hui et al., 

(2022) [39] using average hourly temperature and relative 

humidity for selected Gulf cities located in Saudi Arabia, 

Kuwait, United Arab Emirates, Oman, Bahrain, and Qatar. 

The ISO conditions are taken as dead state conditions. The 

authors Himanshu & Ralph, (1987) [46] concluded that 

adding inlet cooling systems to the existing gas turbine units 

should be considered seriously and could be justified in hot 

periods. 

The following techniques for turbine inlet air cooling 

(TIAC) are widely used (Di et al., 2019; Kousuke et al., 

2005): 

▪ Evaporative cooling systems 

Media evaporative cooling (MEC). 

High pressure fogging (HPF). 

▪ Refrigerated inlet cooling systems 

Mechanical vapor compression, Refrigeration cooling, 

(MVC). 

Absorption cooling, Absorption chillers cooling, (ACS). 

▪ Thermal energy storage (TES) systems. 

Al-Ibrahim and Varnham (2010) reviewed the inlet air-

cooling technologies that can be used to improve the 

performance of gas turbines power plants in Saudi Arabia. 

The evaporative coolers are divided into evaporative media 

and fogging systems. These cooling technologies are suitable 

for hot and dry climates rather than the hot and humid ones 

(Peyman et al., 2018; Rui et al., 2017) [47]. Two main 

subcategories of refrigeration cooling systems are mechanical 

refrigeration and absorption cooling. The refrigerated inlet 

cooling systems have high power consumption and so many 

auxiliary equipment, but they have a greater performance 

than media evaporative and fogging. In thermal energy 

storage (TES) system, chillers are used to cool water or one 

of the aqueous fluids or to make ice, and store it in a tank for 

later use to meet the cooling needs. TES is used during the 

peak loads when power is highly valued (5–7 h per day). 

Chillers are sized to run during non-peak demand times 

(perhaps 17–19 h per day) (Matianov 2020). The amount of 

stored cooling energy depends on the temperature difference 

between the chilled water stored in the tank and the warm 

water returned from the heat exchanger (Shukla et al., 2018). 

Many studies conducted comparison research between those 

technologies. Using Engineering Equation Solver (EES), the 

thermodynamic models of single-effect water-lithium 

bromide (H2O-LiBr) absorption chillers and evaporative 

coolers were created (Sanjay & Mohapatra 2014). Alhazmy 

et al., (2006) examined the influence of inlet air-cooling on 

gas turbine power output and efficiency utilizing two 

alternative cooling approaches, direct mechanical 

refrigeration and evaporative water spray cooling using the 

EES software. The authors used the daily air temperature and 

humidity of Jeddah on the 16th of August, in which the 

temperature fluctuated between 33 and 41 °C and the relative 

humidity reached 100%.  
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They reported that under the hot humid conditions of 

Jeddah, the daily power output of the ABB-11D5 gas turbine 

was increased by 6.77 and 2.57% by using the direct 

mechanical refrigeration and the spray air-cooling, 

respectively. Omidvar (2001) studied the effect of using 

evaporative cooling and absorption chillers on the power and 

efficiency of a gas turbine compared with the ISO 

performance. The results indicate that absorption chillers 

were the best cooling option for ambient air that was both hot 

and had a low relative humidity. Using typical meteorological 

year (TMY) data, the power needs of various inlet air cooling 

strategies for GE Frame 6B gas-turbine power plants in two 

locations—Marmul and Fahud, Oman—were assessed 

(Hussein et al., 2020). A 48.8 °C summertime ambient 

temperature and a nominal power output of 40 MW at base 

load were taken into consideration. Evaporative and fogging 

cooling systems yielded power gains of 9.83% and 11.36%, 

respectively. According to Orhorhoro & Orhorhoro (2016), in 

both sites, fogging cooling uses 11.4% less electrical energy 

than evaporative cooling. For Marmul location, the annual 

water requirements were 12 655 and 14 085 tons for 

evaporative and fogging, respectively. The design 

compressor inlet air temperature for H2O-LiBr chilling 

systems was 14 °C, and for both aqua-ammonia absorption 

and vapor-compression refrigeration systems was 8 °C. For 

H2O-LiBr chilling systems, a maximum power boosting of 

15.32% (from 34.6 to 39.9 MW) could be gained. Besides, for 

both aqua-ammonia absorption and vapor-compression 

refrigerating systems, a maximum average temperature 

dropped of 26.7 °C and a maximum power boosting of 19.7% 

(from 34.6 to 41.4 MW) were expected in August. The H2O-

LiBr cooling offered 40% and 55% more energy than fogging 

cooling at Fahud and Marmul, respectively. The aqua-

ammonia water and vapor-compression cooling offered 39% 

and 46% respectively of annual power production at Ukwaba 

et al., (2020) studied the effects absorption cooling, 

evaporative cooling, and steam injection on the inter-cooled 

reheat recuperated gas turbine cycle. A comparison between 

water spraying system and cooling coil was achieved by 

Alhazmy and Najjar (2006). The performance characteristics 

were examined for a set of design and operational parameters 

including ambient temperature, relative humidity, turbine 

inlet temperature, and pressure ratio. The found results 

showed that the less expensive option was the spray coolers 

but they deeply influenced by ambient temperature and 

relative humidity. While cooling coils gave full control over 

inlet conditions but had large parasitic power requirements. 

The spray coolers reduced the temperature of incoming air by 

3–15 °C, enhancing the power output by 1–7% and improving 

efficiency by about 3%. The cooling coils enhanced the 

turbine output power by 10% during cold humid conditions 

and 18% during hot humid conditions. The lack of energy 

storage caused net power to go down by 6.1% and 37.6% for 

cold and hot humid conditions, respectively. On the other 

hand, other authors have proposed and developed new 

techniques to enhance the performance of gas turbines 

(Sanjay & Mohapatra, 2014; Shukla et al., 2018; Matianov 

2020). Alhazmy and Najjar (2006) used the waste heat from 

the exhaust of the gas turbine to enhance the power output 

and efficiency combined with reducing inlet air temperature. 

The system consists of an upper propane Organic Rankine 

Cycle (ORC) cascaded by a gas refrigeration lower propane 

cycle. The effect of the ambient temperature, gas turbine 

exhaust temperature, compression ratios of the upper and 

lower cycles and the saturation pressure of the condenser 

were investigated. They compared their method with the 

absorption, the mechanical compression, the evaporation 

cooling and the fogging system. For economic analysis, four 

cities, Abu-Dhabi, Riyadh, British Colombia and Amman, 

were used to find the recovery period and overall 

performance of the system using the peak hours weather data 

of the day. Yazdani et al., (2020) used the air Brayton 

refrigerator (reverse Joule Brayton) cycle to cool the intake 

air at the compressor of gas turbine cycle. The typical weather 

data for Jeddah, Saudi Arabia were used. Barakat et al., 

(2019) used the earth to air heat exchanger (EAHE) as a new 

application to the inlet air cooling of gas turbines. They 

developed a model solving the discrete numerical equations 

applied to the New Gas Damietta power plant as a case study. 

Using the earth to air heat exchanger increased the output 

power and thermal efficiency of the gas turbine by 9% and 

4.8% respectively. In the economic analysis, the annual 

revenue increased by 1.655 MUSD with a payback period of 

1.2 years. 

III. RESEARCH METHODOLOGY 

A. Description of The Powerplant 

Data obtained from the Karbala powerplant will be used in 

this research work. The power plant is a 2× (125MW) frame 

9001EA gas turbine with 250MW capacity, connected to the 

Iraqi National Grid. It is owned by the Iraqi Ministry of 

Electricity and supplied by the General Electric (GE) 

Company. The station started commercial operation in 

October 2012. Karbala power Station is location by 

coordinates of lat.32.435899˚N and long.44.126398˚E.  

B. Data Collections  

The working data of Karbala powerplant were collected 

from the daily operation reports. These collected data for the 

cold months and hot months were studied.  Summary of an 

operating parameter of a unit 1GT (Frame 9001EA) gas 

turbine used for this study at an ambient temperature of 25℃ 

shows in Table 1. The thermodynamic analysis was done for 

all gas turbine components where the energy conservation 

and mass conservation laws were applied as governing 

equations of each component and the performance of the 

plant was evaluated having a fogging cooling system.  

Table 1: Operating Parameters for Kabala Powerplant 

(Kadhim et al., 2023) 

Operating Parameters Value Unit 

Fuel Flow Rate 6 kg/s 

Ambient Temperature 300 K 

Pressure Ratio across all 

states 
10 -- 

Compressor Isentropic 

Efficiency 
87 % 

Turbine Isentropic 

Efficiency 
88 % 

Lower Heating Value 48439 kJ/kg 
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C. Thermodynamic Analysis and Simulation of the Gas 

Turbine  

Thermodynamic analysis is carried out using the first law 

of thermodynamics with respect to energy and mass 

conservation. The analysis was performed across all 

thermodynamic stages and processes inherent in the operation 

of the gas turbine system. The thermodynamic model 

performed in this analysis is shown below: 

i. For Compression and Expansion Phases 

Isentropic compressor power (kW)             𝑃𝑖𝑐 =
ṁ𝑎𝑖𝑟𝐶𝑝𝑎𝑖𝑟(𝑇2 − 𝑇1)   (1) 

𝑀𝑒𝑐ℎ𝑎𝑛𝑖𝑐𝑎𝑙 𝑐𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑜𝑟 𝑝𝑜𝑤𝑒𝑟 (𝑘𝑊)  𝑃𝑚𝑐 = 𝑃𝑖𝑐/𝜁𝑚𝑐  (2) 

𝐼𝑠𝑒𝑛𝑡𝑟𝑜𝑝𝑖𝑐 𝑡𝑢𝑟𝑏𝑖𝑛𝑒 𝑝𝑜𝑤𝑒𝑟 (𝑘𝑊)                  𝑃𝑖𝑇 =

ṁ𝑔𝑎𝑠𝐶𝑝𝑔𝑎𝑠(𝑇3 − 𝑇4)   (3) 

𝑀𝑒𝑐ℎ𝑎𝑛𝑖𝑐𝑎𝑙 𝑡𝑢𝑟𝑏𝑖𝑛𝑒   𝑝𝑜𝑤𝑒𝑟 (𝑘𝑊)             𝑃𝑚𝑇 = 𝑃𝑖𝑇/𝜁𝑚𝑇

 (4) 

𝑀𝑒𝑐ℎ𝑎𝑛𝑖𝑐𝑎𝑙 𝑁𝑒𝑡 𝑃𝑜𝑤𝑒𝑟 (𝑘𝑊)                       𝑃𝑚 = 𝑃𝑚𝑇 −
𝑃𝑚𝑐  (5) 

𝑀𝑒𝑐ℎ𝑎𝑛𝑖𝑐𝑎𝑙 𝑁𝑒𝑡 𝑃𝑜𝑤𝑒𝑟 (𝑀𝑎𝑥𝑖𝑚𝑢𝑚)(𝑘𝑊) 𝑃𝑚 =

ṁ 𝐶𝑝[(𝑇𝑚𝑎𝑥  𝜁𝑖𝑇𝜁𝑚𝑇) (1 −
1

Ƭ
) − (

𝑇𝑚𝑖𝑛

𝜁𝑖𝑐𝜁𝑚𝑐
)(𝜏 − 1)]             (6) 

Eqn. 6 is however only used with the assumption that mass 

flow rates, specific heat capacities and ratios are the same for 

air and exhaust gases. 

ii. For Combustion Phase 

Mass balance (kg/s) ṁ𝑎𝑖𝑟 +
ṁ𝑓𝑢𝑒𝑙 = ṁ𝑒𝑥ℎ 𝑔𝑎𝑠𝑒𝑠 (7) 

Energy balance (kW)            ṁ𝑎𝑖𝑟𝐶𝑝𝑎𝑖𝑟𝑇2 + 𝐻𝐶𝑉ṁ𝑓𝑢𝑒𝑙𝜁𝑐𝑐 =

ṁ𝑒𝑥ℎ 𝑔𝑎𝑠𝑒𝑠𝐶𝑝𝑒𝑥ℎ 𝑔𝑎𝑠𝑒𝑠𝑇3 (8) 

Overall efficiency (%) 𝜁𝑜 =
𝑃𝑚

ṁ𝑓𝑢𝑒𝑙𝐿𝐻𝑉
 (9) 

Specific fuel consumption 𝑆𝐹𝐶 =
ṁ𝑓𝑢𝑒𝑙

𝑃𝑚
3600 (10) 

The above model was used to create an Efficiency, Output 

power, and SFC calculator using Microsoft Excel 

IV. RESULTS 

The results derived from running the data in table 1 using 

the model (1-10) presented above are presented in the table 

and charts below.

Table 2: Research Results 

Inlet Temp (K) Net Output (Mw) SFC (kg/kWh) Total Flow (Kg/S) Overall Eff. (%) 

300 87.81 0.25 304 0.30 

305 89.27 0.24 304 0.31 

310 90.74 0.24 304 0.31 

315 92.20 0.23 304 0.32 

320 93.66 0.23 304 0.32 

325 95.13 0.23 304 0.33 

330 96.59 0.22 304 0.33 

335 98.06 0.22 304 0.34 

340 99.52 0.22 304 0.34 

Expressed in the figures below are the charts of compressor 

inlet temperatures against corresponding quantities of Net 

Output, SFC and Overall Efficiency; 

 

Fig. 1: Net Output Against Compressor Inlet 

Temperature Chart 

Fig.1 above shows the graphical relationship of the result 

between net output and compressor inlet temperature of the 

GPP. From this chart, we notice an upward pattern from left 

to right, showing a direct proportional relationship for both 

quantities under review. The figure expresses a net 13.34% 

increase in power output for a 40K rise in ambient 

temperature between 300 and 340K. Fig. 2 below further 

gives insight on the effect of increasing ambient temperature 

on GPP performance as derived from this analytical research 

 

Fig. 2: SFC Against Compressor Inlet Temperature 

Fig. 2 goes ahead to show the graphical relationship of the 

result between specific fuel consumption (SFC) and 

compressor inlet temperature (CIT) of the GPP. From this 

chart, we notice a downward pattern from left to right, 

showing an inverse proportional relationship for both 

quantities under review. The figure expresses a net 12% 

reduction in SFC for a 40K rise in ambient temperature 

between 300 and 340K.  
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Fig. 3 below attempts to illustrates the direct impact of 

ambient temperature on thermal efficiency within the 

confines of this analytical research. Finally, Fig. 3 above 

shows the graphical relationship of the result between overall 

efficiency and CIT of the GPP. From this chart, we notice an 

upward pattern from left to right, showing a direct 

proportional relationship for both quantities under review. 

The figure expresses a net 13.34% increase in power output 

for a 40K rise in ambient temperature between 300 and 340K. 

 

Fig. 3: Overall Rfficiency Against Inlet Temperature 

A. Research Assumptions 

The above are results derived from analysis while 

respecting the following assumptions; 

▪ Pressure ratio across all thermodynamic processes 

remained constant 

▪ Mass flow rate was not constant for air and exhaust gases 

▪ Specific heat ratios for air and exhaust gases were not 

identical 

▪ Specific heat capacities for air and exhaust gases were 

unidentical 

V. CONCLUSION 

Converse to the usual phenomenon that suggests that a rise 

in the compressor inlet temperature of a GPP results in a 

consequential rise in its SFC, and a drop in its production 

capacity and overall efficiency, this research has shown 

otherwise. With data collected from the Karbala powerplant 

and analyzed using a proprietary spreadsheet embedded with 

eqn. (1-10) thermodynamic model that obeys the first law of 

energy and mass conservation, the research goes ahead to 

suggest that for every rise in temperature, there was a drop in 

SFC; and a consequential increase in net production capacity 

and overall efficiency. This is possible because a rise in the 

compressor inlet temperature (T1), directly caused an increase 

to the combustor entry temperature (T3), thereby reducing the 

amount of fuel needed for ignition. This directly affects the 

SFC which according to thermodynamic model, is inversely 

proportional to net mechanical power output (Pm). Hence for 

a mathematical expression as such, a dip in the SFC value will 

yield an equal but opposite increase for the Pm. Furthermore, 

the Pm relates mathematically to the overall efficiency (𝜁𝑜) by 

a direct proportionality. Suggesting that an increase in the 

value of Pm will give an equal amount of increase in the value 

of 𝜁𝑜. Hence the results presented and discussed in this 

research. 

VI. RECOMMENDATION 

Giving the findings from this research and acknowledging 

that in practice, cooling the compressor inlet air increases air 

density and reduces compressor work which is good for 

production capacity, the following will be suggested; 

▪ Pre-compressor cooling technologies be researched on 

and developed to aid compressor work reduction 

▪ High efficiency heat exchanging technologies that are 

cost effective be further developed for pre-combustor 

heating from waste exhaust gases heat. This will reduce 

the amount of fuel needed for continuous combustion, 

impacting positively in the GPP SFC that ultimately 

results in power output and overall efficiency increase.  

The proposed system can be seen in the schematic fig. 4 

below; 

 

Fig. 4: Schematic of Recommended GPP 

Fig. 4 above provides a schematic of the recommended 

simple GPP with pre-compressor cooling and pre-combustor 

heating modifications. Process (1-2), ambient air enters the 

cooling tower to be cooled before compression. After 

cooling, the cooled air of higher density enters the 

compressor (C) (2-3) for compression at constant entropy. 

The compressed air leaves the compressor at high pressure 

and reduced volume, and is preheated using a counter-flow 

heat exchanger (3-4) by waste heat from exhaust gases. (4-5) 

the preheated air at high temperature and enthalpy enters the 

combustor for isobaric heat addition. (5-6) high enthalpy gas 

enters the turbine (engine) for energy extraction by turbine 

blades and expansion. (6-7) high temperature exhaust gases 

enters the heat exchanger from the turbine for heat extraction 

to aid pre-combustion heating. (7-1) heat is rejected under 

isobaric condition to the environment by exhaust gases. This 

system looks to ensure reduction in compressor work and 

SFC of the GPP, giving rise to increased power output and 

thermal efficiency. 
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